CBVS: A Large-Scale Chinese Image-Text Benchmark for Real-World Short Video Search Scenarios

Xiangshuo Qiao^{1,†},Xianxin Li^{1,†},Xiaozhe Qu¹,JieZhang ^{1,*},Yang Liu¹,YuLuo ¹, Cihang Jin¹ andJinMa ²

1 Tencent PCG, Beijing, China
2 University of Science and Technology of China, Hefei, Anhui, China
*Corresponding author.
†These authors contributed equally.

Background

- 1. Why do we need video covers?
- 2. However, there is a significant difference between images for pre-training and video covers.
- Most of the images for pre-training are presented in the form of open domain common-sense visual elements. Differently, video covers in short video search scenarios are presented as user-originated contents that provide important visual summaries of videos.
- ➤ In addition, a portion of the video covers come with manually designed cover texts that provide semantic complements. However, there is a phenomenon of missing video covers, and existing models have not taken this issue into consideration.

Open Domain Images

Short Video Cover Images

Overview of Our Work

- 1. In order to fill in the lack of cover data for short video search scenarios, we release the largest Chinese cover image-text dataset with video title texts and cover texts.
- 2. We build a **manual fine-labeling image-text benchmark** test for Chinese short video search scenarios, containing real user queries from browser logs.
- 3. We **propose UniCLIP**, which introduces an image classification task and an image-text matching task to guide image-text contrastive learning training. UniCLIP imposes no additional inference cost and training is immune to the modality missing problem.

dataset, code and checkpoints are available at https://github.com/QQBrowserVideoSearch/CBVS-UniCLIP

Dataset Construction:

Query=小鹏G6和特斯拉ModelY (Xpeng G6 and Tesla Model Y)

Query=西红柿炒鸡蛋(<u>Tomato and Egg Stir-fry</u>)

OCR text: 致敬? 还是超越? 特斯拉ModelY VS 小鹏 G6

Pay tribute? Or beyond? Tesla Model Y VS Xpeng G6

Relevance Level: 2

OCR text: 小鹏G6 买它!

Go for the Xpeng G6!

Relevance Level: 1

OCR text: 尼古拉·特斯拉究

竟有多强?

Just how brilliant was Nikola Tesla?

Relevance Level: 0

OCR text: 无

Null

Relevance Level: 2

OCR text: 无

Null

Relevance Level: 1

OCR text: 鸡胸肉黄瓜丁

Diced Chicken Breast with Cucumber

Cucumber

Relevance Level: 0

Title

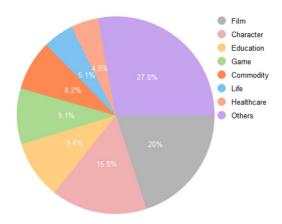
故宫三大殿最后一作——保和殿!一千三百个零件 历时两年 完整三大殿,不可错过!

The final masterpiece of the Forbidden City's three main halls - the Hall of Preserving Harmony! With 1,300 components and two years in the making, the complete trio of halls is a must-see!

OCR text

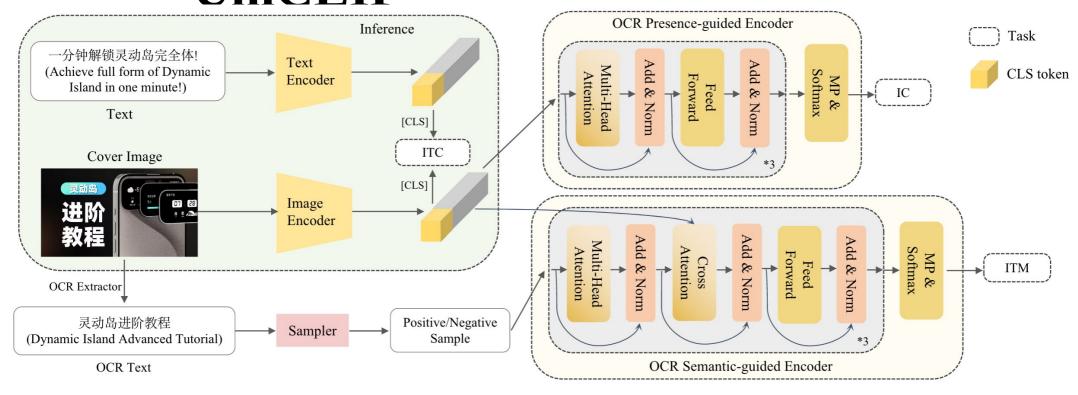
故宫保和殿

The Hall of Preserving Harmony in the Forbidden City


Chinese Image-Text Datasets

Wukong	101,483,885	101,483,885	Open Websites	Image	Caption	✓
Wukong-Test	33,365	33,365	Open Websites	Image	Caption	✓
Product1M	1,182,083	1,182,083	E-Commerce	Image	Caption	✓
M6-Corpus	60,500,000	60,500,000	Open Websites	Image	Caption	X
ZERO-Corpus	250,000,000	750,000,000	Image Search	Image	Title, Content, Query	✓
R2D2-ICR	200,000	200,000	Image Search	Image	Caption	✓
R2D2-IQR	200,000	200,000	Image Search	Image	Query	✓
CBVS-20K	20,001	20,001	Video Search	Cover Image	OCR, Query	✓
CBVS-5M	4,767,435	4,767,435	Video Search	Cover Image	OCR, Title	✓
CBVS-10M	10,075,989	10,075,989	Video Search	Cover Image	OCR, Title	✓

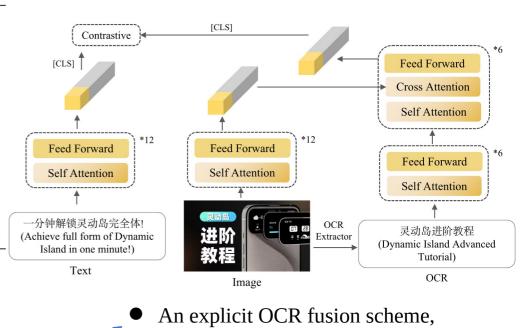
Top:


Presentation of CBVS-20K data.

Bottom: Presentation of **CBVS-5M/10M data**.

Distribution of **categories** of **user queries** in CBVS-20K.

Model Construction:UniCLIP


Model structure of UniCLIP. When the model performs inference, only the green area works.

ITC stands for "Image-Text Contrastive" IC stands for "Image Classification", and ITM stands for "Image-Text Matching". $L_{\it ITC}$ and $L_{\it ITM}$ are computed in the same way as ALBEF. $L_{\it IC}$ is realised by the binary cross entropy function.

 $L_{\rm ITC}$ is the core task of the image-text contrastive learning, $L_{\rm IC}$ and $LI_{\rm TM}$ are used for guidance.

Experiment

Mode	Method	Recall Metrics				Rank Metrics				
Mode	Method	R@1	R@5	R@10	MR	PNR	NDCG@1	NDCG@5	NDCG@10	MAP
	$CN ext{-}CLIP_{ViT-B/16}$	0.384	0.628	0.704	0.572	2.718	0.768	0.835	0.885	0.764
	$CN ext{-}CLIP_{ViT-L/14}$	0.434	0.685	0.756	0.625	2.812	0.773	0.840	0.889	0.775
	$WuKong_{ViT-B/32}$	0.197	0.356	0.439	0.331	2.000	0.702	0.791	0.858	0.712
	$WuKong_{ViT-L/14}$	0.311	0.503	0.583	0.466	2.229	0.739	0.811	0.872	0.738
	Taiyi-CLIP $_{ViT-B}$	0.251	0.445	0.525	0.407	2.142	0.718	0.800	0.861	0.727
Zero-shot	Taiyi-CLIP $_{ViT-L}$	0.269	0.492	0.577	0.446	2.278	0.726	0.805	0.866	0.733
	Ernie-ViL2. 0_{ViT-B}	0.413	0.660	0.742	0.605	2.759	0.764	0.835	0.886	0.768
	R2D2-23 $M_{ViT-L/14}$	0.258	0.407	0.436	0.367	2.312	0.733	0.810	0.868	0.738
	R2D2-250 $M_{ViT-L/14}$	0.356	0.512	0.535	0.468	2.829	0.789	0.842	0.891	0.775
	$AltCLIP_{ViT-L}$	0.162	0.284	0.336	0.261	1.869	0.669	0.771	0.842	0.701
	$QA-CLIP_{ViT-B/16}$	0.400	0.652	0.724	0.592	2.804	0.774	0.838	0.888	0.770
Fine-tuning	$CN ext{-}CLIP_{ViT-B/16}$	0.471	0.721	0.796	0.663	2.914	0.767	0.838	0.888	0.767
	R2D2-250 $M_{ViT-L/14}$	0.418	0.605	0.650	0.558	2.934	0.780	0.844	0.891	0.774
	$QA-CLIP_{ViT-B/16}$	0.473	0.711	0.783	0.656	2.907	0.778	0.841	0.890	0.771
	$ALBEF ext{-}CLIP_{ViT-B/16}$	0.468	0.731	0.794	0.664	2.906	0.771	0.839	0.889	0.769
	$UniCLIP_{ViT-B/16}$	0.503	0.754	0.820	0.692	3.069	0.784	0.846	0.893	0.779

which is denoted as **ALBEF-CLIP**

Evaluation on the CBVS-20K dataset. Our proposal achieves **SOTA performance**

$L_{IC} \left L_{ITM} \right $	Recall Metrics				Rank Metrics					
	L_{ITM}	R@1	R@5	R@10	MR	PNR	NDCG@1	NDCG@5	NDCG@10	MAP
		0.473	0.711	0.783	0.656	2.907	0.778	0.841	0.890	0.771
\checkmark		0.491	0.747	0.818	0.685	2.991	0.776	0.843	0.890	0.772
	✓	0.499	0.754	0.812	0.688	3.006	0.783	0.845	0.893	0.779
√	✓	0.503	0.754	0.820	0.692	3.069	0.784	0.846	0.893	0.779

Model	$ < S_T, S_T > $ (11.71%)	$ < S_F, S_F > $ (46.51%)	$ < S_T, S_F > $ (41.78%)	All (100.00%)
QA-CLIP $_{ViT-B/16}$	3.203	2.722	2.975	2.877
$ALBEF ext{-}CLIP_{ViT-B/16}$	3.375	2.689	3.051	2.906
$UniCLIP_{\mathit{ViT-B/16}}$	3.331	2.904	3.194	3.069

• Results of **ablation study** of UniCLIP

• PNR metrics for **different OCR texts combinations**

Summary

- 1. We establish the **first large-scale c**over-text **b**enchmark for Chinese short **v**ideo **s**earch scenarios, which provides short video covers and real user queries.
 - > we release the largest publicly available Chinese video cover-video title dataset to fill in the lack of cover data for short video search scenarios
 - ➤ We further build a manual fine-labeling video cover-user query benchmark test for short video search domain
- 2. We further propose **UniCLIP**, which integrates the semantic information of cover-texts without increasing the inference cost, is uniform with and without cover text, and has the advantage of online deployment
- 3. We believe CBVS could further facilitate advanced research in short video search scenarios

https://github.com/QQBrowserVideoSearch/CBVS-UniCLIP