

EVALUATING COST-ACCURACY TRADE-OFFS IN MULTIMODAL SEARCH RELEVANCE JUDGEMENTS

Silvia Terragni, Cuong Hoang, Joachim Daiber, Pallavi Gudipati, Pablo N. Mendes

Agenda

- 1. Introduction
- 2. Related Work
- 3. Methodology
- 4. Results
- 5. Conclusion

Introduction - Why is search relevance evaluation hard?

A judge needs to:

- 1. Understand the intent behind the search query
- 2. color, price
- 3. Take the use-case into consideration - eg. E-commerce vs News articles
- 4. Interpret and integrate information from various attributes across different modalities
- 5. Handle low quality data or data with missing attributes

Interpret product relevance based on multiple features including the title, description, images, category,

Introduction - Why is search relevance evaluation hard?

- 1. Human annotation is reliable but costly and time-consuming
- 2. producing relevance judgements
- 3.

We evaluate the following:

- Is LLM performance use-case dependent? 1.
- 2. Is there a clear winner?
- 3. Is multimodal support necessary for search relevance judgement in multimodal search?
- What models offer the optimal cost-accuracy trade-offs? 4.

Large Language Models (LLMs) and Multimodal Language Models (MMLMs) are a viable alternative for

LLMs-as-judges can unlock higher relevance judgement throughput at a fraction of the cost

Related Work

- 1. provided by users
- 2.
- 3. Chen et al. assess judges through a new benchmark - performance in tasks such as Scoring Evaluation, Pair Comparison and Batch Ranking
- 4. and GPT-4V

Prometheus - a 13-billion parameter LLM designed to evaluate long texts using customized scoring rubrics

JudgeLM - fine-tuned LLMs as scalable judges to evaluate other LLMs effectively in open-ended tasks

Yang et al. investigates the relevance estimation of Vision-Language Models (VLMs), including CLIP, LLaVA,

Methodology

Our pipeline consists of three stages:

- 1. Data Collection: Search results from 3 datasets
- Human Annotation: 2 trained human annotators assigned relevance grades 2.
- Model Evaluation: Range of LLMs and MLLMs to generate relevance judgements З.

Methodology - Datasets

3 datasets - Fashion, Hotel Supplies, and Design

- Fashion H&M Personalized Fashion Recommendations (publicly available) 1.
- Hotel Supplies E-commerce search for hotel supply products (proprietary) 2.
- 3. Design - Social media search for design assets (proprietary)

Dataset	Total Number of Search Results	Avg Number of Textual Fields	Avg Number of Empty Textual Fields	Avg Number of Words per Result	
Fashion	1120	33	1	49	
Hotel Supplies	2210	17	8	96	
Design	1713	32	3	69	

Methodology - Retrieval System

- Baseline system that combines BM25 with BGE-M3 embeddings 1.
- 2. Created indexes for each dataset
- 3. Retrieved results based on a predefined list of queries
 - Derived from real traffic data or 1.
 - 2. Carefully crafted by human experts
- 4. retrievers

Aim was to include queries and results that included hits and misses generated by both lexical and semantic

Methodology - Relevance Judgement Strategy

- 1. Two expert human annotators assessed the relevance of each pair on a 0-2 rating scale:
 - 2: Highly relevant, a perfect match for the query
 - 1: Somewhat relevant, a result that partially matches the query's intent
 - O: Not relevant, a poor result that should not be shown
- 2. Grading guidelines were adapted to suit the specific characteristics of the datasets.

Query: "v-neck white tee"

Image	Image Search Result			
	prod_name: Premium ELKE vneck tee, index_name: Ladieswear, detail_desc: V-neck T-shirt in airy slub lin[], department_name: Jersey/Knitwear Premium, index_group_name: Ladieswear, colour_group_name: White, product_type_name: T-shirt, graphical_appearance_name: Solid, perceived_colour_value_name: Light, perceived_colour_master_name: White	2		

Methodology - Inter-Annotator Agreement

- We use Cohen's Kappa to assess reliability of relevance judgements 1.
 - 1. Used to quantify inter-annotator agreement for categorical data
 - 2. Ranges from -1 to 1, where 1 indicates strong agreement, while values closer to 0 suggest agreement no better than chance
- 2. We calculate:
 - Agreement between human annotators and LLM-generated annotations 1.
 - 2. Agreement between the pair of human annotators

Cohen's kappa
0 - 0.20
0.21 - 0.40
0.41 - 0.60
0.61 - 0.80
0.81 - 1.00

Interpretation

- Slight agreement
- Fair agreement
- Moderate agreement
- Substantial agreement
- Almost perfect agreement

Methodology - Models

- Range of LLMs and MLLMs with varying levels of performance and cost 1.
- 2. OpenAl Models:
 - 1. GPT-4V (gpt-4-vision-preview)
 - 2. GPT-40 (gpt-40-2024-05-13)
 - 3. GPT-4o-mini (gpt- 4o-mini-2024-07-18)
- З. Anthropic Models:
 - Claude 3.5 Sonnet 1.
 - 2. Claude 3 Haiku

Methodology - Prompts

- 1. Prompt guides the model to generate accurate relevance judgements
- 2. In multimodal setup, prompt references and includes the image
- 3. Prompt instructs the model to provide an explanation for its relevance judgement

Haiku's Prompt Template (Text-only Setup)

You are an assistant responsible for rating how the retrieved result is related the query. Output a token: "2", "1", or "0" followed by a full explanation. Guidelines: "2" - The result matches exactly with what the user's query is looking for. "1" - The result is not exactly with what the user's query is looking for.

pretty similar. As our aim is to be strict on exact matches, this grade is likely to be used.

```
"0" - The result is not related to the query at all.
```

```
Result: {{document}}
Query: {{query}}
Output:"
```

ovant to out it's ess	You are an assistant responsible for rating how the retrieved result is relevant to the query. If an image is available, use it to determine the relevance to the query. Output a token: "2", "1", or "0" followed by a full explanation. Guidelines: "2" - The result matches exactly with what the user's query is looking for. "1" - The result is not exactly with what the user's query is looking for. But it's pretty similar. As our aim is to be strict on exact matches, this grade is less likely to be used. "0" - The result is not related to the query at all. Result: {{document}} Query: {{query}}
	{{image}}
	Token:

Results - Multimodal vs Single-modality Evaluation

- LLM performance is dependent on the use case 1.
- 2. No single model outperforms all the others across every use case
- 3. Tailoring a model's prompt to a specific domain can help
- Vision component helps in larger models, but not the smaller models 4.

	GPT-4v		GPT	GPT-4o (GPT-4o mini		Sonnet		iku	Human
	ММ	Text	ММ	Text	ММ	Text	ММ	Text	ММ	Text	ММ
Fashion	0.503	0.498	0.613	0.606	0.424	0.382	0.441	0.387	0.371	0.431	0.680
Hotel Supplies	0.620	0.596	0.627	0.582	0.506	0.565	0.634	0.638	0.471	0.560	0.641
Design	0.320	0.317	0.404	0.331	0.294	0.299	0.351	0.381	0.260	0.309	0.447
Average	0.481	0.471	0.548	0.506	0.408	0.415	0.475	0.469	0.368	0.433	0.589

Results - Cost-Accuracy Trade-off

- 1. on both text and multimodal tasks
- 2. GPT-40 offers higher performances at a lower cost compared to GPT-4V
- 3. Sonnet is cheaper than GPT-40 but the performance also suffers.
- Haiku is a very good choice for low-budget tasks 4.

	GPT-4V	GPT-4o	GPT-4o-mini	Sonnet	Haiku
\$/1M Input tokens	10.00	5.00	0.15	3.00	0.25
\$/1M Output tokens	30.00	15.00	0.60	15.00	1.25
\$/1M images (low resolution)	425.00	425.00	425.00	1048.58	87.38

GPT-4V is the most expensive model with high costs for tokens and image processing but performs strongly

Results - Prompt Engineering

- 1.
- 2. Smaller models are more sensitive to prompt complexity
- 3. Prompts are model specific
- Asking for explanations helps. It also helps us improve the prompt iteratively. 4.

Strict guidelines - results improved after we included instructions to prefer grades 2 (GREAT) and 0 (BAD)

Conclusion

- 1. relevance judgement capabilities of MLLMs
- 2. evaluated
- 3.
- We would like to encourage future work in the following directions: 4.
 - 1. Improving the abilities of general MLLMs across use cases
 - 2. Improving cost and computational efficiency of large MLLMs
 - 3. specialized applications

We have presented a new analysis of MLLMs-as-a-Judge, to assess the cost-accuracy trade-offs of

Various LLMs have shown potential, but no single LLM showed optimal cost-accuracy across all use cases

Choosing the best LLM judge for a given use-case is time-intensive and financially-demanding

Creating small MLLMs that are optimized for judging relevance in cost-optimal ways for more

© OBJECTIVE, INC. PRIVILEGED AND CONFIDENTIAL